Induced colorings of graphs and digraphs

M. Anholcer ${ }^{(1)}$, B. Bosek ${ }^{(2)}$, J. Grytczuk ${ }^{(3)}$

${ }^{(1)}$ Poznań University of Economics and Business, Poznań, Poland
${ }^{(2)}$ Jagiellonian University, Kraków, Poland
${ }^{(3)}$ Warsaw University of Technology, Warszawa, Poland
Let $G=(V, E)$ be a graph. A labeling $\varphi: V \cup E \rightarrow \mathbb{N}=\{1,2, \ldots\}$ is called a (K, L)-total labeling, if $\varphi(x) \leqslant K$ and $\varphi(u v) \leqslant L$, for all $x \in V$ and $u v \in E$. For every vertex $x \in V$, we define the weight of x by $w_{\varphi}(x)=$ $\varphi(x)+\sum_{v \in N(x)} \varphi(x v)$. One may think of the function $w_{\varphi}: V \rightarrow \mathbb{N}$ obtained in this way, as of a vertex coloring induced by the labeling φ.

We consider the following general question: What type of a graph coloring can be realized as an induced coloring with labels of bounded size? In a positive case, we look for the least possible constants in a (K, L)-total labeling inducing a desired coloring of any graph. For example, it is known that every graph has a (K, L)-total labeling inducing the usual proper coloring with $(K, L)=(1,5)$ and $(K, L)=(2,3)$. It is conjectured that the same is true with $(K, L)=(1,3)$ and $(K, L)=(2,2)$ (these are the famous 1-2-3 Conjecture and 1-2 Conjecture, respectively). On the other hand, it is known that 2 -distance coloring cannot be induced by a ($1, L$)-total labeling with any constant L.

In the talk we shall discuss the above "inducibility" issues for majority, acyclic, star, and nonrepetitive coloring of graphs, in both, directed and undirected version.

Research supported by the National Science Center of Poland under grant no. 2020/37/B/ST1/03298.

