On a Problem of Steinhaus

M.Anholcer⁽¹⁾, B.Bosek⁽²⁾, J.Grytczuk⁽³⁾, <u>G.Gutowski⁽²⁾</u>, J.Przybyło⁽⁴⁾, R.Pyzik⁽²⁾, M.Zając⁽³⁾,

- ⁽¹⁾ Poznań University of Economics and Business
- ⁽²⁾ Jagiellonian University
- ⁽³⁾ Warsaw University of Technology
- ⁽⁴⁾ AGH University of Science and Technology

In this talk, inspired by the 17-points Problem of Steinhaus (Problems 6 and 7 from his famous book Sto zadań), we discuss infinite sequences of real numbers in [0, 1). For a function $f : \mathbb{N} \to \mathbb{N}$, we say that a sequence X is f-piercing if for every integer $m \ge 1$, the first f(m) elements of X contain at least one element in every interval $\left[\frac{i}{m}, \frac{i+1}{m}\right)$ for every $i = 0, 1, \ldots, m-1$. There is a nice construction of an $\left(\frac{m}{\ln 2}\right)$ -piercing sequence due to de Bruijn and Erdős which satisfies even stronger piercing properties. We are able to show that this is best possible, as there are no $(\alpha m + o(m))$ -piercing sequences for $\alpha < \frac{1}{\ln 2}$. Our results allow for some new tight linear bounds for similar concepts defined for finite sequences. Ideas presented during this talk are described in full detail in our arXiv manuscript [1].

References

 M.Anholcer, B.Bosek, J.Grytczuk, G.Gutowski, J.Przybyło, R.Pyzik, M.Zając, On a Problem of Steinhaus, arXiv:2111.01887.