On local antimagic chromatic number of graphs with cut-vertices

 $\underline{G.C. Lau^{(1)}}$, W.C. Shiu⁽²⁾, H.K. Ng⁽³⁾

⁽¹⁾ Universiti Teknologi MARA, Segamat, Malaysia

⁽²⁾ The Chinese University of Hong Kong, Hong Kong, China

⁽³⁾ San José State University, San José, USA

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection $f : E \to \{1, \ldots, |E|\}$ such that for any pair of adjacent vertices x and $y, f^+(x) \neq f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with eranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, the sharp lower bound of the local antimagic chromatic number of a graph with cut-vertices given by pendants is obtained. The exact value of the local antimagic chromatic number of many families of graphs with cut-vertices (possibly given by pendant edges) are also determined. Consequently, we partially answered Problem 3.1 in [Local antimagic vertex coloring of a graph, Graphs and Combin., **33** (2017), 275–285.].

References

 S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, *Graphs and Combin.*, 2017, 275–285.