The longest CT-paths in 4-regular plane graphs

T. Madaras ${ }^{(1)}$, D. Matisová ${ }^{(1)}$, J. Valiska ${ }^{(2)}$
${ }^{(1)}$ P. J. Šafárik University, Institute of Mathematics, Košice, Slovakia
${ }^{(2)}$ Technical University, Košice, Slovakia

Let G be a 4 -regular graph with prescribed rotation system and let e_{1}, e_{2}, e_{3}, e_{4} be edges incident with a vertex v in that order. The pairs e_{1}, e_{3} and e_{2}, e_{4} are called $C T$-adjacent in G. A $C T$-path ($C T$-trail) is a path (trail) in which every two consecutive edges are $C T$-adjacent. Simple 4-regular plane graphs consisting of a single closed $C T$-trail are called knots; if every closed $C T$-trail of a simple 4 -regular plane graph is a $C T$-cycle, then the graph is called Grötzsch-Sachs graph.

In this talk, we show that the longest $C T$-path in an n-vertex knot has at most $n-2$ vertices, and give construction of knot with longest $C T$-path with that number of vertices for every $n \geqslant 8$; also we prove that the longest $C T$-path in an n-vertex Grötzsch-Sachs graph has at most $\frac{2 n}{3}$ vertices. Next, we show that there exists infinitely many simple 4 -regular plane graphs whose longest $C T$-paths contain just eight vertices; we conjecture that, apart of the single exception, all graphs with longest 8 -vertex paths are Grötzsch-Sachs graphs. In addition, we provide an analogous construction yielding knots with longest 16 -vertex paths. In the case when the longest $C T$-path has less than eight vertices, we pose a conjecture (supported by computer simulations generating the list of feasible graphs) that there is only finitely many corresponding 4 -regular plane graphs; we have confirmed its validity for longest $C T$-paths on four and five vertices.

