Ramsey numbers of Boolean lattices

D.Grósz ${ }^{(1)}$, A.Methuku ${ }^{(2)}$, C.Tompkins ${ }^{(3)}$

${ }^{(1)}$ University of Pisa, Pisa, Italy
${ }^{(2)}$ University of Birmingham, Birmingham, UK
${ }^{(3)}$ Rényi Institute, Budapest, Hungary
The poset Ramsey number $R\left(Q_{m}, Q_{n}\right)$ is the smallest integer N such that any blue-red coloring of the elements of the Boolean lattice Q_{N} has a blue induced copy of Q_{m} or a red induced copy of Q_{n}. The weak poset Ramsey number $R_{w}\left(Q_{m}, Q_{n}\right)$ is defined analogously, with weak copies instead of induced copies.

Axenovich and Walzer[1] showed that $n+2 \leqslant R\left(Q_{2}, Q_{n}\right) \leqslant 2 n+2$. Recently, Lu and Thompson[5] improved the upper bound to $\frac{5}{3} n+2$. We solve this problem asymptotically by showing that $R\left(Q_{2}, Q_{n}\right)=n+O(n / \log n)$. Recent work of Axenovich and Winter[2] implies that the $n / \log n$ term is required.

In the diagonal case, Cox and Stolee[4] proved $R_{w}\left(Q_{n}, Q_{n}\right) \geqslant 2 n+1$ using a probabilistic construction. In the induced case, Bohman and Peng[3] showed $R\left(Q_{n}, Q_{n}\right) \geqslant 2 n+1$ using an explicit construction. Improving these results, we show that $R_{w}\left(Q_{m}, Q_{n}\right) \geqslant n+m+1$ for all $m \geqslant 2$ and large n by giving an explicit construction.

References

[1] M. Axenovich and S. Walzer. Boolean Lattices: Ramsey Properties and Embeddings. Order 34 (2017): 287-298.
[2] M. Axenovich and C. Winter. Poset Ramsey numbers: large Boolean lattice versus a fixed poset. arXiv preprint arXiv:2110.07648, (2021).
[3] T. Bohman and F. Peng. A Construction for Cube Ramsey. arXiv preprint arXiv:2102.00317, (2021).
[4] C. Cox and D. Stolee. Ramsey numbers for partially-ordered sets. Order 35.3 (2018): 557-579.
[5] L. Lu and J. C. Thompson. Poset Ramsey Numbers for Boolean Lattices. arXiv preprint arXiv:1909.08680, (2019).

