Constructing sparsest ℓ -hamiltonian saturated *k*-uniform hypergraphs for a wide range of ℓ

A. Ruciński⁽¹⁾, <u>A. $\dot{Z}ak^{(2)}$ </u>

⁽¹⁾ Adam Mickiewicz University, Poznań, Poland

⁽²⁾ AGH University of Science and Technology, Cracow, Poland

Given $k \ge 3$ and $1 \le \ell < k$, an (ℓ, k) -cycle is one in which consecutive edges, each of size k, overlap in exactly ℓ vertices. We study the smallest number of edges in k-uniform n-vertex hypergraphs which do not contain hamiltonian (ℓ, k) cycles, but once a new edge is added, such a cycle is promptly created. It has been conjectured [1, 2] that this number is of order n^{ℓ} and confirmed [2, 3] for $\ell \in \{1, k/2, k-1\}$, as well as for the upper range $0.8k \le \ell \le k-1$. Here we extend the validity of this conjecture to the lower-middle range $(k-1)/3 \le \ell < k/2$.

References

- G. Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs. J. Graph Theory 1999 pp. 205-212.
- [2] A. Ruciński and A. Żak, Hamilton saturated hypergraphs of essentially minimum size, *Electron. J. Comb.*, 2013 pp.P25.
- [3] A. Ruciński, A. Żak, On the Minimum Size of Hamilton Saturated Hypergraphs, *Electron. J. Comb.* 2020 pp. P4.36.